翻訳と辞書
Words near each other
・ Syzygy (mathematics)
・ Syzygy (poetry)
・ Syzygy (The X-Files)
・ Syzygy Darklock
・ Syzygys
・ Syzyx
・ Syðradalur
・ Syðradalur, Streymoy Island
・ Syðrugøta
・ Syöksy-class motor torpedo boat
・ Syöte National Park
・ Syřenov
・ Sz
・ Sz (digraph)
・ Sz'Kwa
Sz.-Nagy's dilation theorem
・ SZA
・ SZA (singer)
・ Szabad Föld
・ Szabad ifjúság
・ Szabad szó
・ Szabadbattyán
・ Szabadegyháza
・ Szabadhídvég
・ Szabadi
・ Szabadkai Friss Újság
・ Szabadkígyós
・ Szabadszentkirály
・ Szabadszállás
・ Szabadság


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Sz.-Nagy's dilation theorem : ウィキペディア英語版
Sz.-Nagy's dilation theorem
The Sz.-Nagy dilation theorem (proved by Béla Szőkefalvi-Nagy) states that every contraction ''T'' on a Hilbert space ''H'' has a unitary dilation ''U'' to a Hilbert space ''K'', containing ''H'', with
:T^n = P_H U^n \vert_H,\quad n\ge 0.
Moreover, such a dilation is unique (up to unitary equivalence) when one assumes ''K'' is minimal, in the sense that the linear span of ∪''n''''UnK'' is dense in ''K''. When this minimality condition holds, ''U'' is called the minimal unitary dilation of ''T''.
== Proof ==
For a contraction ''T'' (i.e., (\|T\|\le1), its defect operator ''DT'' is defined to be the (unique) positive square root ''DT'' = (''I - T
*T'')½. In the special case that ''S'' is an isometry, the following is an Sz. Nagy unitary dilation of ''S'' with the required polynomial functional calculus property:
:U =
\begin S & D_ \\ 0 & -S^
* \end.

Also, every contraction ''T'' on a Hilbert space ''H'' has an isometric dilation, again with the calculus property, on
:\oplus_ H
given by
:S =
\begin T & 0 & 0 & \cdots & \\ D_T & 0 & 0 & & \\ 0 & I & 0 & \ddots \\ 0 & 0 & I & \ddots \\ \vdots & & \ddots & \ddots \end
.
Applying the above two constructions successively gives a unitary dilation for a contraction ''T'':
:
T^n = P_H S^n \vert_H = P_H (Q_ U \vert_)^n \vert_H = P_H U^n \vert_H.


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Sz.-Nagy's dilation theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.